报告题目:Asymptotic Behavior of Functional Diffusion Systems with Two-time Scales
报告人:吴付科教授、博士生导师(华中科技大学数学与统计学院)
报告时间:2017年10月27日(周五)下午16:30
报告地点:数学统计学院413会议室
承办单位:宝盈娱乐app数学统计学院
欢迎广大师生届时光临!
报告摘要:This work is concerned with functional diffusions with two-time scales in which the slow-varying component process involve path-dependent functionals and the fast-varying component process is independent of the slow-varying component. When the small parameter tends to zero, asymptotic properties are developed. The martingale method and the weak convergence are adopted to treat this problem. Since the path-dependent functionals are involved, when the martingale method and the weak convergence are used, the functional It\^{o} differential operator will be employed. By treating the fast-varying component process as random "noise", under appropriate conditions, this paper shows that the slow-varying component process involving path-dependent functionals converges weakly to a stochastic process which satisfies a stochastic functional differential equation, in which the coefficients are determined by the invariant measure of the fast-varying component.
报告人简介:教授,博士生导师,2003年博士毕业于华中科技大学数学与统计学院。主要从事随机微分方程以及相关领域的研究,2011年入选教育部新世纪优秀人才支持计划,2012年入选华中科技大学“华中学者”,2014年获得基金委优秀青年基金资助,2015年获得湖北省自然科学二等奖,2017年获得英国皇家学会"牛顿高级学者"基金,SCI期刊《IET Control Theory & Applications》编委。近年来,在SIAM J. Appl. Math., SIAM J. Numer. Anal., SIAM J. Control Optim., Numer. Math., J. Differential Equations, Automatica和IEEE TAC等国际权威期刊发表论文80余篇,全部为SCI收录。共主持4项国家自然科学基金和一项教育部新世纪优秀人才基金。